Constitutive relationships
The stresses and strain are related through a constitutive relationship.
σ = C ϵ \sigma = C \epsilon σ = C ϵ
or in tensor notation
σ i j = c i j k l ϵ k l \sigma_{ij} = c_{ijkl} \: \epsilon_{kl} σ ij = c ijk l ϵ k l
The stress σ \sigma σ and strain ϵ \epsilon ϵ are symmetric, second order tensors which can be represented in matrix form
σ = [ σ x x σ x y σ x z σ y x σ y y σ y z σ z x σ z y σ z z ] \sigma =
\begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\
\sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\
\sigma_{zx} & \sigma_{zy} & \sigma_{zz} \\
\end{bmatrix} σ = σ xx σ y x σ z x σ x y σ yy σ zy σ x z σ yz σ zz
ϵ = [ ϵ x x ϵ x y ϵ x z ϵ y x ϵ y y ϵ y z ϵ z x ϵ z y ϵ z z ] \epsilon =
\begin{bmatrix}
\epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\
\epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\
\epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \\
\end{bmatrix} ϵ = ϵ xx ϵ y x ϵ z x ϵ x y ϵ yy ϵ zy ϵ x z ϵ yz ϵ zz
The relationship between the stress and strain is through the constitutive relationship which is a fourth order tensor so for convenience of representing this as a matrix the stress and strain tensors are represented as vectors using modified Voigt notation:
σ = ( σ x x , σ y y , σ z z , σ x y , σ y z , σ z x ) \sigma = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz},\sigma_{xy}, \sigma_{yz}, \sigma_{zx}) σ = ( σ xx , σ yy , σ zz , σ x y , σ yz , σ z x )
ϵ = ( ϵ x x , ϵ y y , ϵ z z , ϵ x y , ϵ y z , ϵ z x ) \epsilon = (\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz},\epsilon_{xy}, \epsilon_{yz}, \epsilon_{zx}) ϵ = ( ϵ xx , ϵ yy , ϵ zz , ϵ x y , ϵ yz , ϵ z x )
For a general anisotropic material the stress-strain relation ship can be expressed as
[ σ x x σ y y σ z z σ x y σ y z σ z x ] = [ c x x x x c x x y y c x x z z c x x x y c x x y z c x x z x c y y y y c y y z z c y y x y c y y y z c y y z x c z z z z c z z x y c z z y z c z z z x c x y x y c x y y z c z z z x s y m m c y z y z c z z z x c z x z x ] [ ϵ x x ϵ y y ϵ z z ϵ x y ϵ y z ϵ z x ]
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{yz} \\
\sigma_{zx} \\
\end{bmatrix} =
\begin{bmatrix}
c_{xxxx} & c_{xxyy} & c_{xxzz} & c_{xxxy} & c_{xxyz} & c_{xxzx}\\
& c_{yyyy} & c_{yyzz} & c_{yyxy} & c_{yyyz} & c_{yyzx}\\
& & c_{zzzz} & c_{zzxy} & c_{zzyz} & c_{zzzx}\\
& & & c_{xyxy} & c_{xyyz} & c_{zzzx}\\
& symm & & & c_{yzyz} & c_{zzzx}\\
& & & & & c_{zxzx}\\
\end{bmatrix}
\begin{bmatrix}
\epsilon_{xx} \\
\epsilon_{yy} \\
\epsilon_{zz} \\
\epsilon_{xy} \\
\epsilon_{yz} \\
\epsilon_{zx} \\
\end{bmatrix} σ xx σ yy σ zz σ x y σ yz σ z x = c xxxx c xx yy c yyyy sy mm c xx zz c yyzz c zzzz c xxx y c yy x y c zz x y c x y x y c xx yz c yyyz c zzyz c x yyz c yzyz c xx z x c yyz x c zzz x c zzz x c zzz x c z x z x ϵ xx ϵ yy ϵ zz ϵ x y ϵ yz ϵ z x