Damper Elements And Node Dampers
Damper elements and node dampers are ‘elements’ with no stiffness but
with viscosity, so these do not form stiffness matrices but instead a
damping matrix. The general form of the damping matrix is
C = [ c x 0 0 0 0 0 − c x 0 0 0 0 0 c y 0 0 0 0 0 − c y 0 0 0 0 c z 0 0 0 0 0 − c z 0 0 0 c x x 0 0 0 0 0 − c x x 0 0 c y y 0 0 0 0 0 − c y y 0 c z z 0 0 0 0 0 − c z z c x 0 0 0 0 0 c y 0 0 0 0 c z 0 0 0 c x x 0 0 c y y 0 c z z ] \mathbf{C} = \begin{bmatrix}
c_{x} & 0 & 0 & 0 & 0 & 0 & - c_{x} & 0 & 0 & 0 & 0 & 0 \\
& c_{y} & 0 & 0 & 0 & 0 & 0 & - c_{y} & 0 & 0 & 0 & 0 \\
& & c_{z} & 0 & 0 & 0 & 0 & 0 & - c_{z} & 0 & 0 & 0 \\
& & & c_{xx} & 0 & 0 & 0 & 0 & 0 & - c_{xx} & 0 & 0 \\
& & & & c_{yy} & 0 & 0 & 0 & 0 & 0 & - c_{yy} & 0 \\
& & & & & c_{zz} & 0 & 0 & 0 & 0 & 0 & - c_{zz} \\
& & & & & & c_{x} & 0 & 0 & 0 & 0 & 0 \\
& & & & & & & c_{y} & 0 & 0 & 0 & 0 \\
& & & & & & & & c_{z} & 0 & 0 & 0 \\
& & & & & & & & & c_{xx} & 0 & 0 \\
& & & & & & & & & & c_{yy} & 0 \\
& & & & & & & & & & & c_{zz} \\
\end{bmatrix} C = c x 0 c y 0 0 c z 0 0 0 c xx 0 0 0 0 c yy 0 0 0 0 0 c zz − c x 0 0 0 0 0 c x 0 − c y 0 0 0 0 0 c y 0 0 − c z 0 0 0 0 0 c z 0 0 0 − c xx 0 0 0 0 0 c xx 0 0 0 0 − c yy 0 0 0 0 0 c yy 0 0 0 0 0 − c zz 0 0 0 0 0 c zz
For an axial or torsional damper only the c x c_{x} c x or c x x c_{xx} c xx terms are
specified, the rest are assumed to be zero.
Dampers are assumed to be massless.