If the material and local axes are not aligned the constitutive relationship needs to be transformed into the local axes of the element. If l i , m i , n i l_i, m_i, n_i l i , m i , n i are the direction cosines relating the material axes, x i ′ x_i' x i ′ to the local axes x i x_i x i such that
x i ′ = l i x 1 + m i x 2 + n i x 3 f o r i = 1 , 2 , 3 x_i' = l_i x_1+ m_i x_2 + n_i x_3 \qquad for \: i=1,2,3 x i ′ = l i x 1 + m i x 2 + n i x 3 f or i = 1 , 2 , 3
In the local axes the stress and strain relationship becomes
σ = C ϵ = T T C m T ϵ \sigma = C \epsilon = T^T C_m T \epsilon σ = C ϵ = T T C m T ϵ
where T T T is
T = [ l 1 2 m 1 2 n 1 2 l 1 m 1 m 1 n 1 n 1 l 1 l 2 2 m 2 2 n 2 2 l 2 m 2 m 2 n 2 n 2 l 2 l 3 2 m 3 2 n 3 2 l 3 m 3 m 3 n 3 n 3 l 3 2 l 1 l 2 2 m 1 m 2 2 n 1 n 2 ( l 1 m 2 + l 2 m 1 ) ( m 1 n 2 + m 2 n 1 ) ( n 1 l 2 + n 2 l 1 ) 2 l 2 l 3 2 m 2 m 3 2 n 2 n 3 ( l 2 m 3 + l 3 m 2 ) ( m 2 n 3 + m 3 n 2 ) ( n 2 l 3 + n 3 l 2 ) 2 l 3 l 1 2 m 3 m 1 2 n 3 n 1 ( l 3 m 1 + l 1 m 3 ) ( m 3 n 1 + m 1 n 3 ) ( n 3 l 1 + n 1 l 3 ) ] T=
\begin{bmatrix}
l_1^2 & m_1^2 & n_1^2 & l_1 m_1 & m_1 n_1 & n_1 l_1 \\
l_2^2 & m_2^2 & n_2^2 & l_2 m_2 & m_2 n_2 & n_2 l_2 \\
l_3^2 & m_3^2 & n_3^2 & l_3 m_3 & m_3 n_3 & n_3 l_3 \\
2 l_1 l_2 & 2m_1 m_2 & 2 n_1 n_2 & (l_1 m_2 + l_2 m_1) & (m_1 n_2 + m_2 n_1) & (n_1 l_2 + n_2 l_1) \\
2 l_2 l_3 & 2m_2 m_3 & 2 n_2 n_3 & (l_2 m_3 + l_3 m_2) & (m_2 n_3 + m_3 n_2) & (n_2 l_3 + n_3 l_2) \\
2 l_3 l_1 & 2m_3 m_1 & 2 n_3 n_1 & (l_3 m_1 + l_1 m_3) & (m_3 n_1 + m_1 n_3) & (n_3 l_1 + n_1 l_3) \\
\end{bmatrix} T = l 1 2 l 2 2 l 3 2 2 l 1 l 2 2 l 2 l 3 2 l 3 l 1 m 1 2 m 2 2 m 3 2 2 m 1 m 2 2 m 2 m 3 2 m 3 m 1 n 1 2 n 2 2 n 3 2 2 n 1 n 2 2 n 2 n 3 2 n 3 n 1 l 1 m 1 l 2 m 2 l 3 m 3 ( l 1 m 2 + l 2 m 1 ) ( l 2 m 3 + l 3 m 2 ) ( l 3 m 1 + l 1 m 3 ) m 1 n 1 m 2 n 2 m 3 n 3 ( m 1 n 2 + m 2 n 1 ) ( m 2 n 3 + m 3 n 2 ) ( m 3 n 1 + m 1 n 3 ) n 1 l 1 n 2 l 2 n 3 l 3 ( n 1 l 2 + n 2 l 1 ) ( n 2 l 3 + n 3 l 2 ) ( n 3 l 1 + n 1 l 3 )
As an example if the material x x x and y y y axes are rotated 90° from the local axes the transformation matrix becomes
T = [ 0 1 0 0 0 0 − 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 − 1 0 0 0 0 1 0 ] T=
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix} T = 0 − 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 1 0 0 0 0 − 1 0
Multiplying the constitutive relationship results in an updated constitutive matrix
C = [ c 22 c 21 c 23 0 0 0 c 12 c 11 c 13 0 0 0 c 32 c 31 c 33 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 66 0 0 0 0 0 0 c 55 ] C=
\begin{bmatrix}
c_{22} & c_{21} & c_{23} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{13} & 0 & 0 & 0 \\
c_{32} & c_{31} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{66} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{55} \\
\end{bmatrix} C = c 22 c 12 c 32 0 0 0 c 21 c 11 c 31 0 0 0 c 23 c 13 c 33 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 66 0 0 0 0 0 0 c 55