Plane stress, plane strain and axisymmetric
The basic relationship between stress and strain is \sigma = C \epsilona n d t h e s t i f f n e s s m a t r i x and the stiffness matrix an d t h es t i ff n ess ma t r i x C$ is of the form
C = [ c 11 c 12 c 13 0 0 0 c 21 c 22 c 23 0 0 0 c 31 c 32 c 33 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 55 0 0 0 0 0 0 c 66 ] C =
\begin{bmatrix}
c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{21} & c_{22} & c_{23} & 0 & 0 & 0 \\
c_{31} & c_{32} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66} \\
\end{bmatrix} C = c 11 c 21 c 31 0 0 0 c 12 c 22 c 32 0 0 0 c 13 c 23 c 33 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 55 0 0 0 0 0 0 c 66
For plane strain the strains ϵ z z \epsilon_{zz} ϵ zz , ϵ y z \epsilon_{yz} ϵ yz and ϵ z z \epsilon_{zz} ϵ zz are zero, and we are not directly interested in the corresponding stresses so we can reduce the stiffness matrix to a 3 × \times × 3 matrix.
C = [ c 11 c 12 0 c 21 c 22 0 0 0 c 44 ] C =
\begin{bmatrix}
c_{11} & c_{12} & 0 \\
c_{21} & c_{22} & 0 \\
0 & 0 & c_{44} \\
\end{bmatrix} C = c 11 c 21 0 c 12 c 22 0 0 0 c 44
Axisymmetric is similar to plane strain, reducing the problem to two dimensions, radial (x x x ) and axial (y y y ), but in this instance the strain in the third (hoop z z z ) direction is related to the radial strain. In this case the strains ϵ y z \epsilon_{yz} ϵ yz and ϵ z x \epsilon_{zx} ϵ z x are zero, and we are not directly interested in the corresponding stresses so we can reduce the stiffness matrix to a 4 × \times × 4 matrix.
C = [ c 11 c 12 c 13 0 c 21 c 22 c 23 0 c 31 c 32 c 33 0 0 0 0 c 44 ] C =
\begin{bmatrix}
c_{11} & c_{12} & c_{13} & 0 \\
c_{21} & c_{22} & c_{23} & 0 \\
c_{31} & c_{32} & c_{33} & 0 \\
0 & 0 & 0 & c_{44} \\
\end{bmatrix} C = c 11 c 21 c 31 0 c 12 c 22 c 32 0 c 13 c 23 c 33 0 0 0 0 c 44
For plane stress the stresses σ z z \sigma_{zz} σ zz , σ y z \sigma_{yz} σ yz and σ z x \sigma_{zx} σ z x are zero, so we can partition the stiffness matrix
C = [ c 11 c 12 0 c 13 0 0 c 21 c 22 0 c 23 0 0 0 0 c 44 0 0 0 c 31 c 32 0 c 33 0 0 0 0 0 0 c 55 0 0 0 0 0 0 c 66 ] C =
\begin{bmatrix}
c_{11} & c_{12} & 0 & c_{13} & 0 & 0 \\
c_{21} & c_{22} & 0 & c_{23} & 0 & 0 \\
0 & 0 & c_{44} & 0 & 0 & 0 \\
c_{31} & c_{32} & 0 & c_{33} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}\\
\end{bmatrix} C = c 11 c 21 0 c 31 0 0 c 12 c 22 0 c 32 0 0 0 0 c 44 0 0 0 c 13 c 23 0 c 33 0 0 0 0 0 0 c 55 0 0 0 0 0 0 c 66
so that the stress strain relationship can focus on the terms of interest i i i and the terms that can be removed r r r .
[ σ i 0 ] = [ C i i C i r C r i C r r ] [ ϵ i ϵ r ] \begin{bmatrix}
\sigma_i \\
0 \\
\end{bmatrix} =
\begin{bmatrix}
C_{ii} & C_{ir} \\
C_{ri} & C_{rr} \\
\end{bmatrix}
\begin{bmatrix}
\epsilon_i \\
\epsilon_r \\
\end{bmatrix} [ σ i 0 ] = [ C ii C r i C i r C rr ] [ ϵ i ϵ r ]
This allows the strain corresponding to unstressed term j j j to be removed giving the updated equation
σ i = ( C i i − C i r C r r − 1 C r i ) ϵ i \sigma_i = (C_{ii} - C_{ir} C_{rr}^{-1} C_{ri}) \epsilon_i σ i = ( C ii − C i r C rr − 1 C r i ) ϵ i
where C i i − C i r C r r − 1 C r i C_{ii} - C_{ir} C_{rr}^{-1} C_{ri} C ii − C i r C rr − 1 C r i is the compliance matrix for plane stress.