Skip to main content

BS 8110

The density of normal weight concrete is given in section 7.2 of BS 8110-2 as 2400 kg/m3.

The design strength is given in Figure 3.3 by

fct=0.67 fc/γf{ct}=0.67 \space f_c/ \gamma \\

The tensile strength is given in 4.3.8.4 as

fct=0.36 fcf_{ct} =0.36 \space \sqrt{f_c} \\

but Figure 3.1 in BS 8110-2 implies a value of 1MPa should be used at the position of tensile reinforcement.

The elastic modulus is given in Equation 17

E=20+0.2fcE= 20 + 0.2 f_c \\

The strains are defined as:

εcu\varepsilon_{cu}εax\varepsilon_{ax}εplas\varepsilon_{plas}εmax\varepsilon_{max}εpeak\varepsilon_{peak}
Parabola-rectangleεu\varepsilon_{u}εcu\varepsilon_{cu}εRP\varepsilon_{RP}0.0035*εRP\varepsilon_{RP}
Rectangleεu\varepsilon_{u}εcu\varepsilon_{cu}εβ\varepsilon_{\beta}
Bilinear
Linearεu\varepsilon_{u}εmax\varepsilon_{max}
Non-linearεu\varepsilon_{u}0.0022
Popovics
EC2 Confined
AISC filled tube
Explicitεu\varepsilon_{u}εcu\varepsilon_{cu}εu\varepsilon_{u}
εu={0.0035           fc60MPa0.00350.001×(fc60)50\varepsilon_u= \begin{cases} 0.0035 \space \space \space \space \space \space \space \space \space \space \space f_c \leq 60 MPa\\ 0.0035-0.001 \times \frac{(f_c-60)}{50} \\ \end{cases}
εRP=2.4×104 fcγ\varepsilon_{RP}=2.4 \times 10^{-4} \space \sqrt{\frac{f_c}{\gamma}} \\

See also the Theory section on Concrete material models.