Skip to main content

EN 1992

The density of normal weight concrete is specified in 11.3.2 as 2200 kg/m3.

The design strength is given in 3.1.6 by

fcd=αccfc/γf_{cd}=\alpha_{cc}f_c/ \gamma \\

For the rectangular stress block this is modified to

fcd=αccfc/γ               fc50MPafcd=αcc1.25(1fc/250)fc/γ      fc>50MPaf_{cd}=\alpha_{cc}f_c / \gamma \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space f_c \leq 50 MPa \\ f_{cd}=\alpha_{cc}1.25(1-f_c /250)f_c/ \gamma \space \space \space \space \space \space f_c >50MPa \\

The tensile strength is given in Table 3.1 as

fct=0.3fc2/3           fc50MPafct=2.12ln(1+(fc+8)/10)        fc>50MPaf_{ct}=0.3f_c^{2/3} \space \space \space \space \space \space \space \space \space \space \space f_c \leq 50 MPa \\ f_{ct}=2.12ln(1+(f_c+8)/10) \space \space \space \space \space \space \space \space f_c > 50 MPa \\

The modulus is defined in Table 3.1

E=22(fc+810)0.3E=22\biggl(\frac{f_c+8}{10}\biggl)^{0.3} \\

The strains are defined as:

εcu\varepsilon_{cu}εax\varepsilon_{ax}εplas\varepsilon_{plas}εmax\varepsilon_{max}εpeak\varepsilon_{peak}
Parabola-rectangleεcu2\varepsilon_{cu2}εc2\varepsilon_{c2}εc2\varepsilon_{c2}
Rectangleεcu3\varepsilon_{cu3}εc3\varepsilon_{c3}εβ\varepsilon_{\beta}
Bilinearεcu3\varepsilon_{cu3}εc3\varepsilon_{c3}εc3\varepsilon_{c3}εcu3\varepsilon_{cu3}εc3\varepsilon_{c3}
Linearεcu2\varepsilon_{cu2}εc2\varepsilon_{c2}
Non-linearεcu1\varepsilon_{cu1}εc1\varepsilon_{c1}
Popovics
EC2 Confinedεcu2,c\varepsilon_{cu2,c}εc2,c\varepsilon_{c2,c}εc2,c\varepsilon_{c2,c}
AISC filled tube
Explicitεcu2,c\varepsilon_{cu2,c}εc2,c\varepsilon_{c2,c}εc2,c\varepsilon_{c2,c}
εc1=0.007fcm0.31     0.0028\varepsilon_{c1}=0.007f_{cm}^{0.31} \space \space \space \space \space \leq0.0028 \\
εcu1={0.0035     fc50MPa0.028+0.027(90fc100)4\varepsilon_{cu1}= \begin{cases}0.0035 \space \space \space \space \space f_c\leq 50MPa \\ 0.028+0.027\bigl(\frac{90-f_c}{100}\bigl)^4 \\ \end{cases} \\
εc2={0.002     fc50MPa0.002+0.000085(fck50)0.53\varepsilon_{c2}= \begin{cases}0.002 \space \space \space \space \space f_c\leq 50MPa \\ 0.002+0.000085(f_{ck}-50)^{0.53} \\ \end{cases} \\
εcu2={0.0035     fc50MPa0.0026+0.035(90fc100)4\varepsilon_{cu2}= \begin{cases}0.0035 \space \space \space \space \space f_c\leq 50MPa \\ 0.0026+0.035\bigl(\frac{90-f_{c}}{100}\bigl)^4 \\ \end{cases} \\
εc3={0.00175     fc50MPa0.00175+0.00055(fck5040)\varepsilon_{c3}= \begin{cases}0.00175 \space \space \space \space \space f_c\leq 50MPa \\ 0.00175+0.00055\bigl(\frac{f_{ck}-50}{40}\bigl) \\ \end{cases} \\
εcu3={0.0035     fc50MPa0.0026+0.035(90fc100)4\varepsilon_{cu3}= \begin{cases}0.0035 \space \space \space \space \space f_c\leq 50MPa \\ 0.0026+0.035\bigl(\frac{90-f_c}{100}\bigl)^4 \\ \end{cases} \\

See also the Theory section on Concrete material models.