Skip to main content

IRC 112

The density of normal eight concrete is assumed to be 2200 kg/m3.

The design strength is given in 6.4.2.8

fcd=0.67fc/γf_{cd}=0.67 f_c/ \gamma \\

In A2.9(2) the strength is modified for the rectangular stress block to

fcd=0.67fc/γ          fc60MPafcd=0.67(1.24fc/250)fc/γ         fc>60MPaf_{cd}=0.67 f_c/ \gamma \space \space \space \space \space \space \space \space \space \space f_c \leq 60MPa \\ f_{cd}=0.67(1.24- f_c/250)f_c/ \gamma \space \space \space \space \space \space \space \space \space f_c > 60MPa \\

The tensile strength is given in by A2.2(2) by

fct=0.259fc2/3          fc60MPafct=2.27ln(1+(fc+10)/12.5)      fc>60MPaf_{ct}=0.259 f_c^{2/3} \space \space \space \space \space \space \space \space \space \space f_c \leq 60MPa \\ f_{ct}=2.27ln(1+(f_c+10)/12.5) \space \space \space \space \space \space f_c > 60MPa \\

The elastic modulus is given in A2.3, equation A2-5

E=22(fc+1012.5)0.3E=22 \Bigl (\frac{f_c+10}{12.5} \Bigl )^{0.3}\\

The strains are defined as

εcu\varepsilon_{cu}εax\varepsilon_{ax}εplas\varepsilon_{plas}εmax\varepsilon_{max}εpeak\varepsilon_{peak}
Parabola-rectangleεcu2\varepsilon_{cu2}εc2\varepsilon_{c2}εc2\varepsilon_{c2}εcu2\varepsilon_{cu2}εc2\varepsilon_{c2}
Rectangleεcu3\varepsilon_{cu3}εc3\varepsilon_{c3}εβ\varepsilon_{\beta}
Bilinearεcu3\varepsilon_{cu3}εc3\varepsilon_{c3}εc3\varepsilon_{c3}εcu3\varepsilon_{cu3}εc3\varepsilon_{c3}
Linearεcu2\varepsilon_{cu2}εc2\varepsilon_{c2}
Non-linearεcu1\varepsilon_{cu1}εc1\varepsilon_{c1}
Popovics
EC2 Confinedεcu2,c\varepsilon_{cu2,c}εc2,c\varepsilon_{c2,c}εc2,c\varepsilon_{c2,c}
AISC filled tube
Explicitεcu2\varepsilon_{cu2}εcu2\varepsilon_{cu2}εcu2\varepsilon_{cu2}
εc1=0.00653(fc+10)0.31    0.0028\varepsilon_{c1}=0.00653 (f_c+10)^{0.31} \space \space \space \space \leq 0.0028 \\
εcu1={0.0035       fc60MPa0.0028+0.027(900.8fc100)4\varepsilon_{cu1}= \begin{cases} 0.0035 \space \space \space \space \space \space \space f_c \leq 60MPa \\ 0.0028+0.027 \Bigl (\frac{90-0.8 f_c}{100} \Bigl )^4 \\ \end{cases}
εc2={0.002           fc60MPa0.002+0.000085(0.8fck50)0.53\varepsilon_{c2}= \begin{cases} 0.002 \space \space \space \space \space \space \space \space \space \space \space f_c \leq 60MPa \\ 0.002+0.000085(0.8 f_{ck}-50)^{0.53} \\ \end{cases}
εcu2={0.0035    fc60MPa0.0026+0.035(900.8fc100)4\varepsilon_{cu2}= \begin{cases} 0.0035 \space \space \space \space f_c \leq 60MPa \\ 0.0026+0.035 \Bigl (\frac{90-0.8 f_c}{100} \Bigl )^4 \\ \end{cases}
εc3={0.00175    fc60MPa0.00175+0.00055(0.8fck5040)\varepsilon_{c3}= \begin{cases} 0.00175 \space \space \space \space f_c \leq 60MPa \\ 0.00175+0.00055 \Bigl (\frac{0.8 f_{ck}-50}{40} \Bigl ) \\ \end{cases}
εcu3={0.0035    fc>50MPa0.0026+0.035(900.8fc100)4\varepsilon_{cu3}= \begin{cases} 0.0035 \space \space \space \space f_c > 50MPa \\ 0.0026+0.035 \Bigl (\frac{90-0.8 f_c}{100} \Bigl )^4 \\ \end{cases}

See also the Theory section on Concrete material models.